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SUMMARY:  

Effect mechanism of high-order modes on multi-mode coupled flutter has been investigated based on the 

experimental and theoretical analysis. First, an aeroelastic test of a suspension bridge was carried out to learn the 

participation of each mode in flutter modality. Second, according to the excitation-feedback principle between 

vibration modes, the practical modality-driven flutter analysis (PMDFA) was proposed to study the quantitative 

impact of each mode on the three-dimensional (3D) coupled flutter. Then, the system damping was expanded along 

the span direction by Taylor’s formula, and the quantitative relationship between the span section and the 

aerodynamic performance was established. Finally, the influence of mode participation and its distribution 

characteristics on the flutter evolution was systematically studied, and the reasons of 3D effect caused by high-order 

modes were revealed. The research results show that the influence of the second-order positive symmetric heaving 

mode on the flutter modality is even greater than that of the first-order positive symmetric heaving mode. The 

damping provided by this second mode changes from negative to positive with wind velocities and its specific 

impact on flutter depends on the ratio of its own frequency to the system frequency. 
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1. INTRODUCTION 

Bridge flutter is a kind of self-excited divergent vibration with coupled multi modes, which is 

mainly driven by the basic torsional mode. Due to the coupled effect between modes, each 

section along the span direction of the bridge shows different motion states, which makes the 

actual bridge vibration show a strong three-dimensional effect (Ma, 2021). To study the three-

dimensional effects, Scanlan (Scanlan, 1978) proposed a three-dimensional flutter frequency 

domain analysis method based on modal coordinates, but unfortunately this method failed to 

consider the coupled relationship between modes. Chen (Chen, 2008) extended the closed-form 

solution of bimodal coupled flutter from 2D to 3D, but this method is only limited to the case of 

bimodal coupling. At present, the research on the three-dimensional flutter mechanism still 

remains at the level of the number of participating modes and the similarity of natural modes, 

and there is no deeper research on how each mode, especially the high-order mode, affects the 

flutter performance. In this paper, the real participation of high-order modes in flutter modality 

was determined through experiments. Then, a practical modality-driven flutter analysis method 

that can reflect the contribution of each mode was proposed to learn the mode effect mechanism. 

Based on the proposed method, the three-dimensional effects caused by high-order modes and 

their causes are revealed. 



 

 

2. EXPERIMENTAL VERIFICATION OF HIGH-ORDER MODAL PARTICIPATION 

An aeroelastic experiment of a suspension bridge with the main span of 1860m was carried out 

in TJ-3 boundary layer wind tunnel of State Key Laboratory of Disaster Reduction in Civil 

Engineering, Tongji University. Seven measuring points are evenly placed in the direction of the 

bridge span. The fundamental heaving modes were identified as shown in Fig. 1 (a). The flutter 

torsional mode is very similar to the first-order positive symmetric torsional mode, while the 

flutter heaving mode are composed of multiple modes. As shown in Fig. 1 (b), when the 

participation of the second-order positive symmetric heaving mode (2-S-V) is considered, the 

similarity between the fitting and actual modes increases from 44.7% to over 90%, which shows 

the high-order mode (2-S-V) plays an important role in flutter.  
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(a) Heaving basic modes (b) Fitted curves by different modes 

Figure 1. Basic modes and flutter modality about the heaving motion 

 

 

3. PRACTICAL MODALITY-DRIVEN FLUTTER ANALYSIS (PMDFA) 

Inspired by the excitation-feedback principle between degrees of freedom in 2D flutter analysis 

(Yang, 2007), this method is introduced into the interaction between main mode and minor 

modes. Finally, the damping 𝜉𝐹 and the frequency 𝜔𝐹 of the system are derived as follows: 
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Where 𝑮𝒅(𝑗, 𝑘) = 𝝓𝑗
𝑻𝑨𝑫𝝓𝑘/𝝓𝑗
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2⁄ , 𝝓𝑗 =𝑗𝑡ℎ  mode, 𝑗, 𝑘=1~ 𝑚, 𝑚 

=number of modes, 𝑴𝑺 = mass matrix, 𝑨𝑫 = aerodynamic damping matrix, 𝑨𝑺 = aerodynamic 

stiffness matrix. 𝜔𝑑 = natural frequency of main mode 𝑑. 𝜉𝑑 = natural damping ratio of the 

main mode. Ω𝑖𝑑 = dimensionless coefficients.  𝜃𝑖𝑑
1 , 𝜃𝑖𝑑

2 = phase angles, 𝑖 =1~𝑚 . 𝛿𝑖  is Dirac-𝛿 

function, when 𝑖 = 𝑑, 𝛿𝑖 = 0; When 𝑖 ≠ 𝑑, 𝛿𝑖 = 1. 

 

The damping is the function of 𝐺𝑑𝑖𝑗
𝑒𝑙  and 𝐺𝑠𝑖𝑗

𝑒𝑙  (𝑖, 𝑗 = 1~𝑚, 𝑙 = 1~𝑛), where 𝑒𝑙  indicates the 𝑙𝑡ℎ 

segment. The damping variation with wind velocities can be expressed as follows: 
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Where 𝑿0 = 𝐺𝑠11
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𝑒𝑙 , ⋯, ∇𝑮(𝑿0) is the first-order partial derivative matrix, 

𝑯(𝑿0) is the second-order Hessian matrix, and 𝒐 is the high-order small quantity. Since the 

iterative wind speed interval is small enough, only the first term in Eq. (3) is considered. The 

calculation formula of any item related to 𝐺𝑠𝑖𝑗
𝑒𝑙 is shown in Eq. (4), and the calculation formula 

related to 𝐺𝑑𝑖𝑗
𝑒𝑙 is similar to Eq. (4). 
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Where 𝐷 and 𝐹 indicate Eq. (1) and Eq. (2) respectively. The sum of the relevant terms of 𝑒𝑙 

indicates the influence of segment 𝑙 at the current wind velocity. The influence of segment 𝑙 on 

the whole flutter process can be obtained by summing the above terms between zero and the 

flutter critical wind velocity (𝑈𝑐𝑟). Thus, the modality-driven method can not only quantitatively 

describe the participation of each mode, but also quantify their distribution characteristics. 

 

 

4. EFFECT MECHANISM OF HIGH-ORDER MODES ON FLUTTER EVOLUTION 

Based on PMDFA, the relationship between each mode and flutter performance evolution are 

investigated from the global and distributed perspectives respectively. 

 

4.1. Global Effect of Each Mode on Flutter Evolution 

Compared with the traditional method, the proposed method has been verified to have sufficient 

accuracy. The 1-S-V, 1-S-T and 2-S-V (expressed by 1, 2, 4 respectively) are the main modes in 

flutter modality. As shown in Fig. 2 (a) and (b), the damping provided by the high-order mode 

(2-S-V) falls first and then rises. This mode in the 1500m bridge provides the negative damping 

in flutter while it provides positive damping in the 500m bridge. As shown in Fig. 2 (c), for the 

1500m bridge, the ratios of 1-S-V and 2-S-V frequencies to the system frequency are less than 1 

within the flutter critical wind speed. As a result, the denominators of 𝜃14
1  and 𝜃24

1  are less than 0, 

and these phase angles are in the second quadrant. For 500m bridge, the ratio of 2-S-V frequency 

to the system frequency is gradually greater than 1 within the flutter critical wind speed, which 

eventually causes the system damping provided by 2-S-V to change from negative to positive. It 

is noteworthy that in the case of non-convergence, such as the iteration of 1500m bridge after 

91.6m/s, the convergence algorithm needs to be improved (Zhu, 2022). 
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Figure 2. Evolution of damping provided by each mode and key parameters 



 

 

4.2. Distributed Effect of Each Mode Along Span Direction 

Distributed damping of each aerodynamic parameter with wind velocities is shown in Fig. 3 (a) 

and (b). The upper and lower parts in the figures are the distributions of 𝐺𝑠𝑖𝑗
𝑒𝑙 and 𝐺𝑑𝑖𝑗

𝑒𝑙. From the 

contribution of each parameter, 𝐺𝑑41, 𝐺𝑑42, 𝐺𝑑44, 𝐺𝑠44, 𝐺𝑠14 and 𝐺𝑠24 play a major role in 

flutter evolution, where 𝐺𝑑44 provides maximum positive damping and 𝐺𝑠14 or 𝐺𝑠24 provides 

maximum negative damping. The whole distributed damping with wind velocities along the span 

direction is shown in Fig. 3 (c). Due to the dominant positive damping before 0.8𝑈𝑐𝑟 , the 

distribution damping shows a half wave and increases with wind velocities. Since the negative 

damping increases gradually after 0.8𝑈𝑐𝑟, the damping distribution curve gradually protrudes 

downward. Since the proportions of negative damping terms are different, the damping 

distribution of 500m bridge finally shows a half-wave form, while that of 1500m bridge shows a 

shape of three half waves. Within 𝑈𝑐𝑟, about 70% of the beam sections provide almost all 

aerodynamic damping. That is to say, if aerodynamic countermeasures are adopted to improve 

flutter performance, only the main contribution areas need to be arranged, not all. 
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Figure 3. Distributed damping along the span direction with wind velocities 

 

 

5. CONCLUSIONS 

The proposed modal analysis method is accurate and reliable. The influence of second-order 

positive symmetric heaving mode on flutter can even exceed that of first-order positive 

symmetric heaving mode. About 70% of the beam segments contribute almost all the 

aerodynamic damping. The effects of high-order modes on flutter are uncertain, which are 

determined by the ratios of their own frequencies to the system frequency. 
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